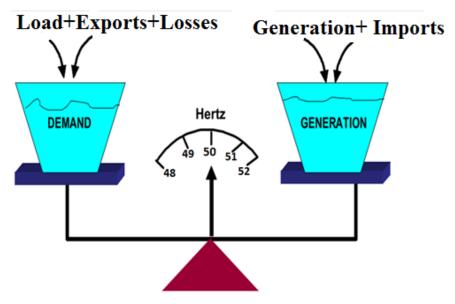
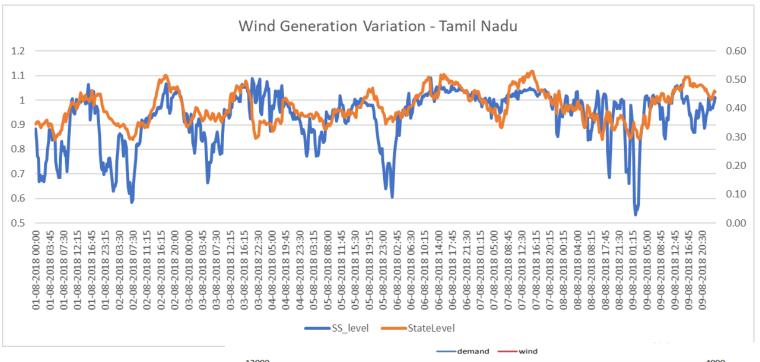


Indian Power Scenario

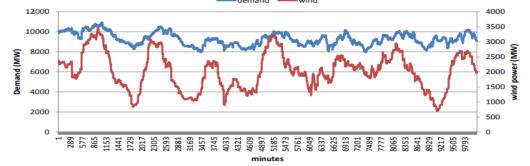


Data as on January 2019. Source: CEA Website



Challenges in System Operations

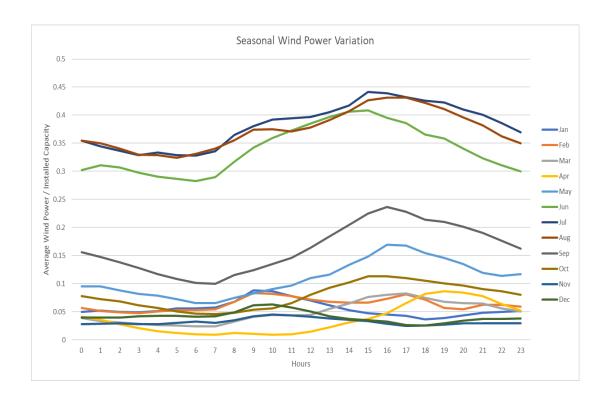
Load-Generation Balance



Conventional System

Only Demand is varying -> Demand Forecasting -> Generation follows the load

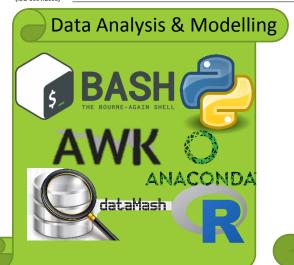
Addition of RE Generation


Both Demand and RE Generation are varying -> Demand + RE Power Forecasting

Why Wind power Forecasting is Needed

- ✓ Wind Power Forecasting (WPF) provides operational planner to schedule the generation and be able to manage the grid.
- √ With out visibility of RE power, ramp up/
 down of steam based generation would
 be difficult in short time
 - √ Leads to Curtailment of Wind power
 - √ Leads to Curtailment of Loads
 - √ The letter from IWPA dated 04-05-2015
 stated that an annual loss of Rs.1000 crores
 incurred to wind generators and around
 3000 crores for the utility during 2013-2014.

Project Highlights



- NIWE has largest data bank of measured wind and solar resource across the country with 1881 wind monitoring stations and 125 solar monitoring stations
- NIWE has access to Indian NWP model data to predict the wind power
- NIWE has developed In-house Data management system, Indigenous Wind Power Forecasting model, Monitoring System and Forecast simulation tools
- The NIWE's forecast is single largest regional forecast with 17.9 GW (52%) of Wind power across India. NIWE also signed MoU with various SLDCs to provide 13 GW of additional forecasting services in upcoming months this would cover about 90% of entire wind installation in the country.
- Centre for Excellence in VG forecasting has been established in NIWE. A dedicated VG (Variable Generation) Forecasting lab has been set up to provide Forecasting service to all wind-rich states of India.
- NIWE already signed MoU with Tamil Nadu, Gujarat, Karnataka, Andhra Pradesh and Rajasthan SLDC to establish operational wind power forecasting system. NIWE proposed to sign MoU with other RE rich states in couple of months.

Emerging Technology used

Met. Data Analysis

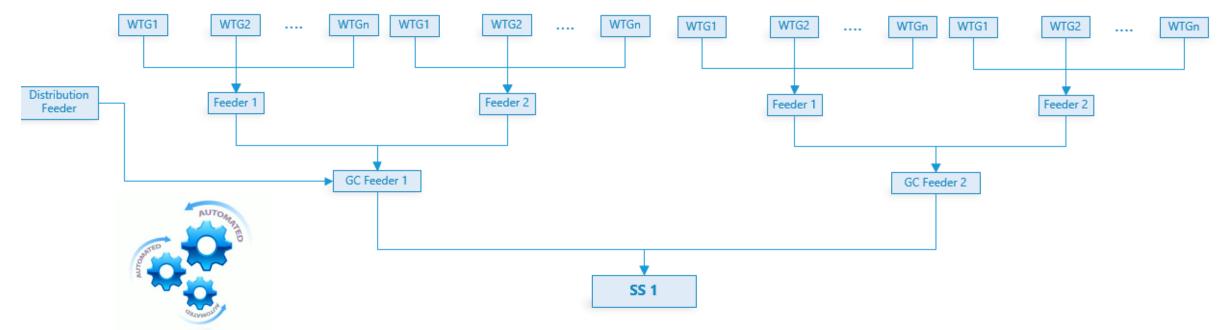
OPENDAP

netCDF Operators (NCO) Software Stack

7 Technologies

6 Technologies

NIWE using 27 Emerging Technologies to carry out wind power forecasting services


Module	Purpose		
Data Analysis & Modelling	To Monitor, Clean, Analyse, Process and Model the data for generating forecast.		
Met. Data Analysis	To analyse the meteorological data and visualize the meteorological parameters for modeling		
GIS, Data Management & Reporting	To carry out Spatial analysis and storing / archiving the Generation / Meterological data		
Web based dashboards	To deliver the Forecast results to stakeholders		

Data Management- Case study TN

Data Receiving from Secured FTP / Web server

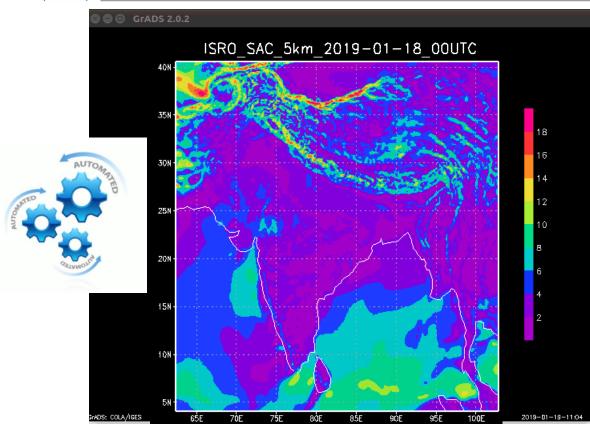
Total Substations in TN: 120

Total wind Feeders: 719

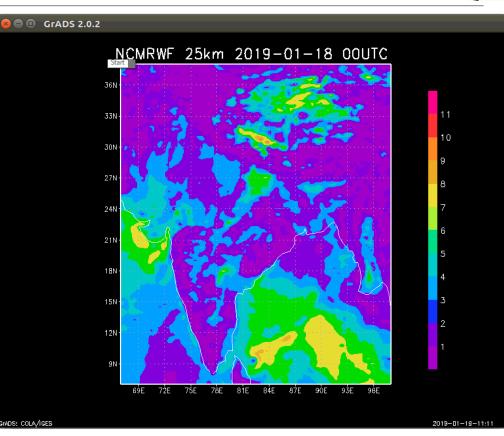
Data receiving frequency: 3 Minutes

No. of data process cycles in a day: 3,45,120

Typical Data receiving Structure of one Substation



State of Art Data Management tools is being used to speed up the overall process



Data Management

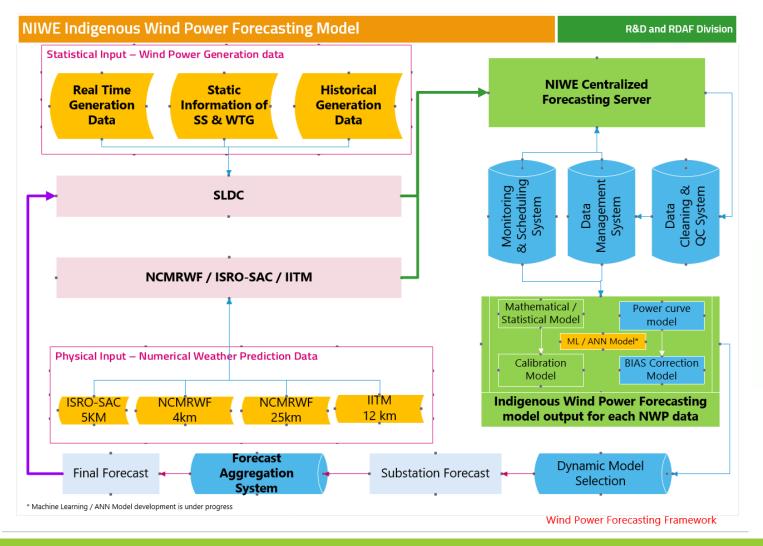
Data Receiving from Secured FTP

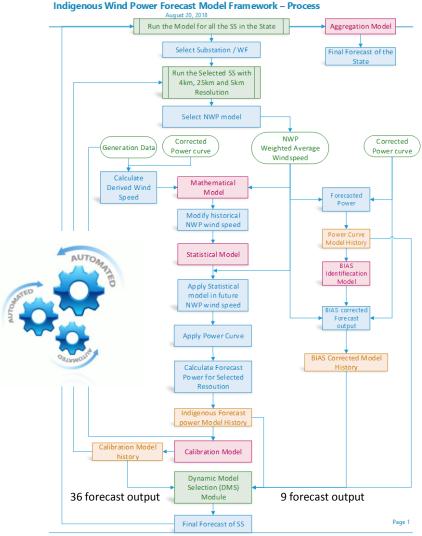
Meteorological forecast received from ISRO_SAC, IITM and NCMRWF High resolution: 8,10,000 (Grid points) Global resolution: 15,625 (Grid Points)

Spatial data Meteorological Storing in analysis and forecast data Database extraction

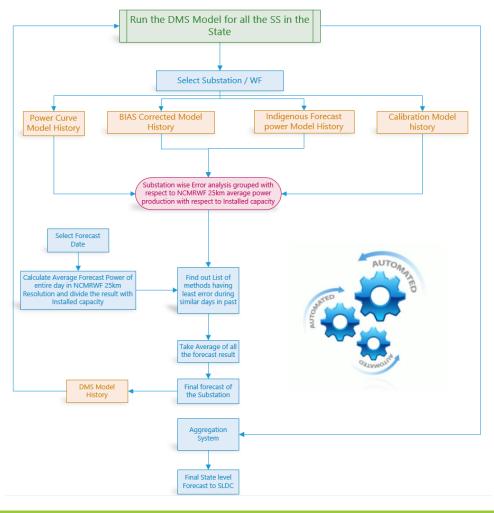
In a day Forecast system would process about 2,157 meteorological data stream

Data Monitoring


Actual generation data monitored every 3 minutes : No. of data process cycles in a day: 3,45,120


Meteorological data monitored every 3 hours No. of data process cycles in a day: 960

Innovation (Indigenous model)



Innovation (Indigenous model)

Dynamic Model Selection Algorithm

- √ NIWE Indigenous forecast model uses Mixed Physical statistical approach
- ✓ Day ahead Model use Meteorological and real time generation data
 - √ 45 different statistically analysed forecast output would be generated @ every updation of NWP
 - ✓ DMS system would intelligently select the best output
 - ✓ Day ahead Model will runs 2 times in a day
 - √ forecast system will carry out statistical analysis of about
 10,804 set of calculations
- ✓ Intraday Model uses real time generation data to refine the forecast
 - ✓ Intraday model will runs 16 times in a day
 - √ The forecast system will carry out statistical analysis of about 1,920 set of calculations
- ✓ State of Art Statistical analysis tools / technologies used to carry out calculations in real time

Data Communication and Security

1	Start .
2	137/udp ALLOW IN 192.168.14.122 (log-all)
3	138/udp ALLOW IN 192.168.14.4 (log-all)
4	138/udp ALLOW IN 192.168.14.122 (log-all)
5	139/tcp ALLOW IN 192.168.14.4 (log-all)
6	139/tcp ALLOW IN 192.168.14.122 (log-all)

- 7 445/tcp ALLOW IN 192.168.14.4 (log-all)
- 445/tcp ALLOW IN 192.168.14.122 (log-all)
 29799:29899/tcp ALLOW IN Anywhere
- 10 29799:29899/udp ALLOW IN Anywhere
- 11 5222 ALLOW IN Anywhere
- 12 6000:6007/tcp ALLOW IN Anywhere
- 13 6000:6007/udp ALLOW IN Anywhere
- 14 5938 ALLOW IN 192.168.14.122 (log-all)
- 15 21 ALLOW IN 117.239.142.60 (log-all)

SAMBA SAMBA SAMBA

Team Viewer FTP_KA_KPTCL

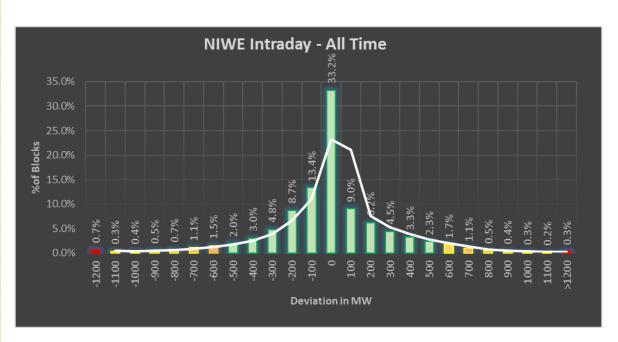
√ Communication Technology used

- √ SLDC is receiving data from Substations using MODBUS technology
- ✓ NIWE is receiving data from TANGEDCO through Secured Webserver
- ✓ Meteorological data is receiving through secured FTP connection
- ✓ NIWE is sharing the forecast result through Secured FTP

Data Security Measures

- ✓ NIWE uses IP-tables and UFW tool to secure the server access
- √ White listing of Public / private IP
- ✓ RSA 2048 bits encrypted secure shell connection established
- ✓ Logging system created to record complete data usage of the server and stored on a daily basis
- √ Regular verification of security arrangement
- √ Back up of data will be carried out on a daily basis

Operational forecast system



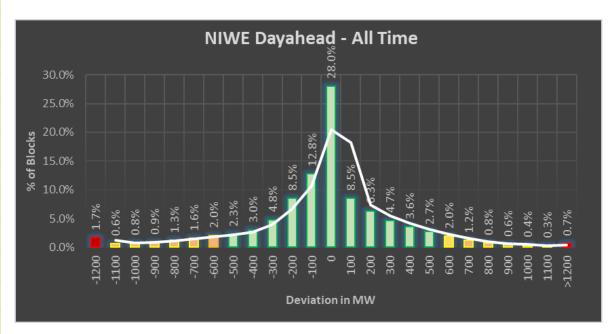
Error Analysis – Case study TN

Intraday % of blocks within 600 MW					
MONTH	2017	2018			
JAN	97%	100%			
FEB	98%	98%			
MAR	98%	96%			
APR	88%	96%			
MAY	82%	80%			
JUN	82%	78%			
JUL	82%	80%			
AUG	77%	88%			
SEP	87%	88%			
OCT	86%	99%			
NOV	99%	100%			
DEC	95%	100%			
Average	89%	92%			

Intraday % of blocks within 1200 MW					
Month	2017	2018			
JAN	100%	100%			
FEB	100%	100% 100% 100% 96% 98%			
MAR	100%				
APR	100%				
MAY	96%				
JUN	99%				
JUL	98%	97%			
AUG	97%	100%			
SEP	99%	100%			
OCT	99%	100%			
NOV	100%	100%			
DEC	99%	100%			
Average	99%	99%			

Upto 600 MW - 92% of blocks and Upto 1200 MW -99% of blocks

Total Blocks with valid actual generation data: 87,688



Error Analysis – Case study TN

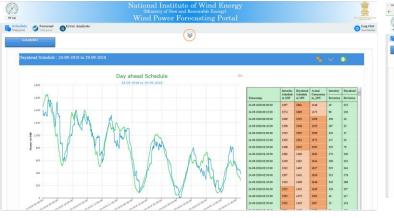
Day ahead % of blocks within 600 MW						
MONTH 2017 2018						
JAN	97%	100%				
FEB	98%	98%				
MAR	99%	96%				
APR	85%	96%				
MAY	73%	79%				
JUN	74%	76%				
JUL	75%	77%				
AUG	62%	86%				
SEP	79%	76%				
OCT	75%	99%				
NOV	99%	100%				
DEC	97%	100%				
Average	84%	90%				

Day ahead % of blocks within 1200 MW					
Month	2017	2018			
JAN	100%	100%			
FEB	100%	100%			
MAR	100%	100%			
APR	100%	100%			
MAY	96%	95%			
JUN	97%	98% 96%			
JUL	97%				
AUG	89%	99%			
SEP	98%	98%			
OCT	95%	100%			
NOV	100%	100%			
DEC	99%	100%			
Average	98%	99%			


Upto 600 MW - 90% of blocks and Upto 1200 MW -99% of blocks

Total Blocks with valid actual generation data: 87,688

Forecasting Portal developed by NIWE



Login Page

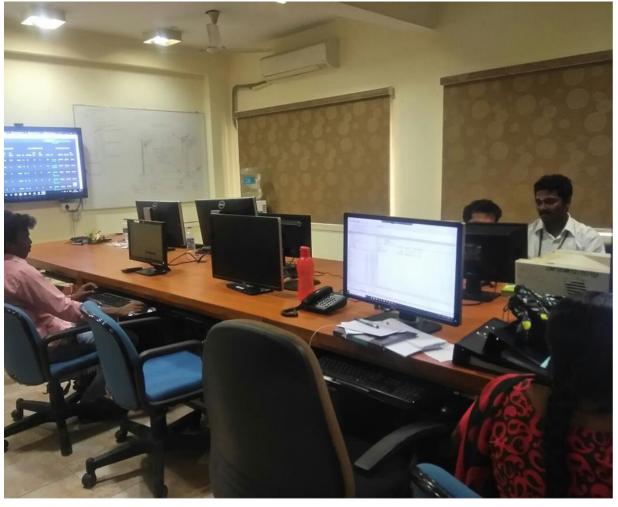
Wind Power Forecast portal – Public view

Monitoring Portal

7 days ahead Forecast

Wind Power Forecast portal – SLDC / Client's View

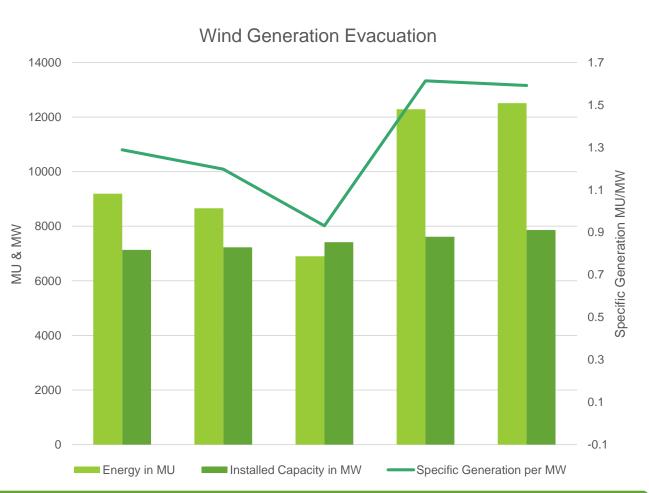
VG Forecasting Laboratory at NIWE



Mission 175 GW of RE by 2022

- ✓ India made a commitment in Paris Climate Agreement
 - ✓ to reduce emission intensity of the economy by one-third and
 - ✓ for having at least 40% electric power installed capacity from clean energy sources by the year 2030
- ✓ Towards this, an ambitious target of 175 GW by 2022 announced in 2015
 - ✓ Solar 100 GW
 - ✓ Wind 60 GW
 - ✓ Biomass 10 GW
 - ✓ Small Hydro 5 GW
- ✓ Forecasting of RE is critical for seamless integration of Renewables in the Grid

Societal Impact


- ✓ Greening the Grid there by adhering to climate change commitment by the country
- ✓ India's Ambitious target is by 2022 –
 60 GW of Wind Installation
 - ✓ Centre For Excellence (CFE) in VG Forecasting project, NIWE focuses to expand the forecasting services to all RE Rich states.
 - ✓ This project is acting like a catalyst to facilitate the industry to achieve the India's Ambitious target
 - ✓ The energy cost of wind and solar reached Grid parity and effective integration through forecasting would reduce overall cost of energy

- ✓ NIWE forecasting services is one of the successful industry relevant ongoing projects
- ✓ NIWE's forecast helping substantial improvement in wind power evacuation and lesser back down of Wind generators in the State.
- ✓ This project facilitate to evacuate more Green power which means reduction of carbon emission
- ✓ It helps to provide available sufficient electricity for the people, which has tangible effects on improving the productivity of the citizens.

Year wise MU generated – TN

TN Wind Generation Days (MU)									
MU	2018	2017	2016	2015	2014	2013	2012	2011	2010
>100	10	2	0	0	0	0	0	0	0
75- 100	55	62	46	6	20	3	40	0	5
50- 75	26	43	63	43	52	66	98	45	23
40- 50	21	16	9	24	30	27	11	44	51
30- 40	19	23	9	32	16	30	12	46	43
20- 30	16	28	12	32	19	17	19	45	43
`10- 20	70	62	52	32	59	50	44	56	53
<10	148	129	175	196	169	172	142	129	147

Generation evacuation improved by more than 70%

Source: Consolidation of SLDC daily generation data

Way Forward

- ✓ NIWE is actively working on to predict the Medium and long term forecasting.
- ✓ Ministry of New and Renewable is in process on signing a MoU with Ministry of Earth Science to collaborate on the indigenous weather prediction model.
- ✓ NIWE focuses on improving the existing operational forecasting model of wind and solar generation to include the Machine learning and Artificial Intelligence.
- ✓ NIWE is in process on creating an Resource data analytics portal Indigenously.

Thank you